

PREFEITURA DE SUZANO

Objeto ELABORAÇÃO DO PLANO MUNICIPAL DE DRENAGEM E MANEJO DE ÁGUAS PLUVIAIS DE SUZANO/SP						
Emitente				Contrato nº. 1	76/2018	
CONSÓRCIO IEME BRASIL - BASE					CREA 0600532810-SP	
	MARCO ANTONIO CAMARGO JULIANI	ART 28027230181244517				
Documento: PRODUTO PT.31		Código	Rev.			
RELATÓRIO DE DADOS E INF ELABORAÇÃO DE ESTUDOS	8	Emissão	12/03/2022			
Documentos de Referência TERMO DE CONTRATO 176/2 EDITAL DE CONCORRÊNCIA TERMO DE REFERÊNCIA E A						
Rev. Resp. Téc./ Emitente	SMPUH - Aprovação	Rev	Resp. Téc./ Emitente SMPUH - Apr		SMPUH - Aprovação	

1

	údo ETAPA 2 – Produto 31 – ELABORAÇÃO DE ESTUDOS HIDROLÓGICOS E ÁRIOS3
1.1. Ide	.1 Definição e caracterização da área de estudo em mapa com a ntificação das bacias hidrográficas e municípios envolvidos3
	.2 Levantamento de Dados e Informações para Desenvolvimento do DMAP/ SUZANO3
1.1.	.3 Elaboração de Estudos Hidrológicos e Cenários4
	Estudos estatísticos das precipitações que assolam o município a ser izada como referência para os dimensionamentos das vazões máximas dos entos de risco do plano4
•	Elaboração da Curva Chave do Rio Tietê nas Áreas de Várzeas de Suzano 10
•	Detalhamento e Caracterização das Sub Bacias16

ETAPA 2 – Produto 31 – ELABORAÇÃO DE ESTUDOS HIDROLÓGICOS E CENÁRIOS

1.1.1 Definição e caracterização da área de estudo em mapa com a Identificação das bacias hidrográficas e municípios envolvidos

A caracterização da área de estudo contemplou:

- A. Descrição e mapa, em base de cartografia oficial (EMPLASA), com o traçado de identificação das bacias envolvidas;
- B. Mapeamento das estruturas de macrodrenagem existentes;
- C. Mapeamento das estruturas de microdrenagem existentes, com indicação dos pontos de lançamento nos corpos d'água receptores;
- D. Levantamento das manchas urbanas atuais e futura.

1.1.2 Levantamento de Dados e Informações para Desenvolvimento do PMDMAP/ SUZANO

Este item refere-se à obtenção de informações necessárias para o desenvolvimento do PMDMAP/Suzano, dando suporte à realização das demais atividades deste estudo. Foram definidos os seguintes itens para o levantamento de dados:

- Cadastramento topobatimétrico das seções de controle existentes ao longo dos cursos d'água em estudo, bem como de uma seção a montante e outra a jusante, com espaçamento de cem metros, ou adequado às condições locais, visando subsidiar a verificação da capacidade de transporte das vazões por essas estruturas;
- 2. levantamento de informações disponíveis em órgãos de interesse, principalmente no DAEE e autorizado pela Diretora da Bacia do Alto Tietê, Enga Seica Ono. Além dos dados fluviométricos para subsidiar o modelo hidrológico, foram solicitadas as seções transversais e travessias ao longo de todo o ribeirão Taiaçupeba Mirim, realizado pelo DAEE em julho de 2015 e janeiro de 2016 para um estudo em desenvolvimento cujo objetivo é determinar o volume de escavação do material assoreado.
- levantamentos de campo para complementar as informações do cadastro do sistema de águas pluviais, principalmente nas áreas baixas e várzeas dos córregos.

1.1.3 Elaboração de Estudos Hidrológicos e Cenários

Foram desenvolvidos os estudos hidrológicos, de uso e ocupação do solo e caracterização de todas as variáveis envolvidas com a drenagem urbana. Estes estudos tiveram como objetivo a elaboração de um diagnóstico do estado atual do sistema de drenagem, incluindo a caracterização e mapeamento de pontos críticos e estes serviram de dados iniciais para determinar as envoltórias de inundação da Etapa 1 – Fase 2.

 Estudos estatísticos das precipitações que assolam o município a ser utilizada como referência para os dimensionamentos das vazões máximas dos eventos de risco do plano

Os estudos hidrológicos foram desenvolvidos com novas tendências tecnológicas de análise das distribuições temporal e espacial das chuvas, considerando os efeitos meteorológicos da região, notadamente as distribuições de chuvas reais observadas a partir do mapeamento espacial dos grandes eventos recentes a partir de informações coletadas num banco de dados GIS e a consistência das séries históricas de precipitação.

Para subsidiar os cálculos hidráulicos em locais propícios a inundação, foram selecionadas as estações pluviométricas. Assim foram determinadas as precipitações de um dia para cada período de retorno, pela extrapolação da distribuição probabilística de Gumbel.

Tabela 1 – Cálculo das extrapolações

VALORES E	EM MM	REGIÃO NORTE		REGIÃO SUL	
		μ=	70.137	μ=	82.478
		α=	16.389	α=	19.763
PERÍODO DE RETORNO (ANOS)	PROBABILIDADE DE EXCEDÊNCIA		RIBUIÇÃO - Norte		RIBUIÇÃO - SUL
10,000	0.0001		221.08		264.50
1,000	0.0010		183.34		218.98
500	0.0020		171.97		205.28
200	0.0050		156.93		187.14
100	0.0100		145.53		173.39
50	0.0200		134.09		159.59
25	0.0400		122.56		145.69
15	0.0667		113.96		135.32
10	0.1000		107.02		126.95
8	0.1333		102.00		120.90
5	0.2000		94.72		112.12
4.0	0.2500		90.56		107.10

	•	-	-
3.0	0.3333	84.93	100.32
2.0	0.5000	76.14	89.72
1.5	0.6667	68.60	80.62
1.4	0.7143	66.44	78.02
1.3	0.7692	63.86	74.91
1.2	0.8333	60.58	70.95
1.1	0.9091	55.80	65.19

Cada valor foi multiplicado pelo fator K = 1,14 que corresponde à transformação da chuva diária em chuva de 24h.

Tabela 2 – Cálculo das precipitações de 24h em mm

	NORTE	RTE SUL		
TR	PRECIPITAÇÃO DE 24H (MM)	PRECIPITAÇÃO DE 24H (MM)		
2	86.80	102.28		
5	107.98	127.82		
10	122.00	144.72		
25	139.72	166.09		
50	152.86	181.93		
100	165.90	197.66		
500	196.05	234.01		
1000	209.01	249.64		

Foram elaboradas as curvas IDF (Intensidade-duração-frequência). com as distribuições de chuvas diárias do IAG-USP, conforme as recomendações do Manual de Cálculo de Vazões do DAEE.

Para a elaboração das curvas IDF e das equações de chuva, foram consideradas as distribuições das chuvas como na tabela a seguir.

Tabela 3 – Cálculo das precipitações de 24h em mm

DISCRETIZAÇÃO (%) - DISTRIBUIÇÃO TEMPORAL (IAG SÃO PAULO)							
DURAÇÃO		PERÍODO DE RETORNO T (ANOS)					
DIAS	MIN	2	5	10	25	50	100
0,007	10	0,253	0,241	0,236	0,232	0,230	0,228
0,014	20	0,388	0,371	0,364	0,358	0,354	0,351
0,021	30	0,473	0,454	0,446	0,438	0,434	0,431
0,042	60	0,612	0,591	0,582	0,573	0,569	0,565
0,083	120	0,730	0,708	0,700	0,692	0,687	0,684
0,13	180	0,787	0,767	0,759	0,752	0,748	0,745
0,17	240	0,823	0,805	0,798	0,791	0,787	0,784

D	DISCRETIZAÇÃO (%) - DISTRIBUIÇÃO TEMPORAL (IAG SÃO PAULO)							
DUR	AÇÃO	PERÍODO DE RETORNO T (ANOS)						
DIAS	MIN	2	5	10	25	50	100	
0,25	360	0,869	0,854	0,848	0,842	0,839	0,837	
0,50	720	0,938	0,930	0,926	0,923	0,921	0,920	
0,75	1.080	0,975	0,971	0,970	0,968	0,968	0,967	
1	1.440	1,000	1,000	1,000	1,000	1,000	1,000	
2	2.880	1,275	1,281	1,285	1,293	1,297	1,300	
3	4.320	1,566	1,570	1,569	1,580	1,582	1,583	
5	7.200	2,013	2,009	2,015	2,020	2,024	2,022	
7	10.080	2,383	2,377	2,377	2,380	2,382	2,378	
10	14.400	2,841	2,825	2,823	2,820	2,818	2,811	
15	21.600	3,479	3,465	3,462	3,473	3,473	3,467	
20	28.800	4,016	3,982	3,977	3,973	3,970	3,967	
30	43.200	4,911	4,833	4,808	4,793	4,776	4,761	

De acordo com a Instrução Técnica – DPO na 11 de 30/11/2017, foi adotado como período de retorno de projeto a TR = 100 anos nas áreas urbanas. Para a análise de risco da Etapa 1 / Fase 2, o período de retorno foi de 2 anos, considerado de maior frequência.

O tempo de concentração máximo não atinge tempo superior a 24h. Portanto, para o município de Suzano foram determinadas as intensidades de chuva entre 10 minutos (tempo de concentração mínimo) e 1440 minutos (24 horas). Assim, foi possível determinar as tabelas a seguir, com a aproximação dos pontos empíricos pelo método do mínimo erro quadrático.

Tabela 4 – Intensidade das precipitações – região Norte de Suzano

	INTENSIDADE (MM/H) – NORTE DE SUZANO						
DURAÇÃO T		PERÍODO DE RETORNO T (ANOS)					
(MINUTOS)	2	5	10	25	50	100	
10	138,4	156,0	170,8	192,4	210,6	230,6	
20	106,7	120,3	131,7	148,4	162,4	177,8	
30	87,3	98,3	107,6	121,3	132,8	145,3	
60	57,1	64,4	70,4	79,4	86,9	95,1	
120	34,5	38,9	42,5	47,9	52,5	57,4	
180	25,0	28,2	30,8	34,7	38,0	41,6	
240	19,7	22,2	24,3	27,4	30,0	32,9	
360	13,5	15,4	17,0	19,4	21,4	23,6	
720	7,3	8,4	9,3	10,6	11,7	12,9	
1080	5,2	5,9	6,5	7,4	8,2	9,0	

	INTENSIDADE (MM/H) – NORTE DE SUZANO					
DURAÇÃO T	PERÍODO DE RETORNO T (ANOS)					
(MINUTOS)	2	5	10	25	50	100
1440	4,0	4,6	5,1	5,8	6,4	7,0

Tabela 5 – Intensidade das precipitações – região Sul de Suzano

		INTENSIDADE (MM/H) – SUL DE SUZANO					
DURAÇÃO T		PERÍO	DO DE RET	ORNO T (A	NOS)		
(MINUTOS)	2	5	10	25	50	100	
10	163,6	184,7	202,5	228,7	250,7	274,9	
20	126,1	142,4	156,1	176,3	193,3	211,9	
30	103,1	116,4	127,6	144,2	158,0	173,3	
60	67,5	76,2	83,6	94,4	103,4	113,4	
120	40,8	46,0	50,5	57,0	62,5	68,5	
180	29,6	33,4	36,6	41,3	45,3	49,7	
240	23,4	26,4	28,9	32,7	35,8	39,2	
360	15,9	18,2	20,1	23,0	25,4	28,2	
720	8,7	9,9	11,0	12,5	13,9	15,3	
1080	6,1	7,0	7,7	8,8	9,7	10,8	
1440	4,7	5,4	6,0	6,9	7,6	8,4	

É notável a grande diferença entre a região norte com a região sul de Suzano, lembrando que a parte norte se refere à região mais urbanizada, **que está ao norte da linha da Barragem de Taiaçupeba**. A região sul é menos urbanizada, mas recebe maior influência das chuvas orográficas advindas do oceano, com isso, a frequência de chuvas e intensidades são maiores.

A seguir são apresentadas as plotagens das curvas de Intensidade-Duração-Frequência (IDF) do município de Suzano, os gráficos estão representados pelas cores das tabelas anteriores.

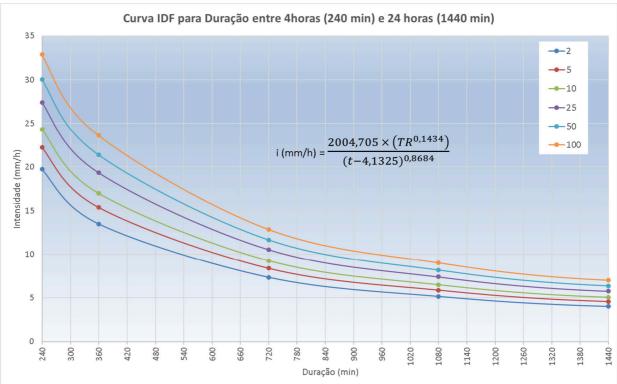


Figura 1 – Curva IDF da região Norte de Suzano para duração entre 2h min e 24h

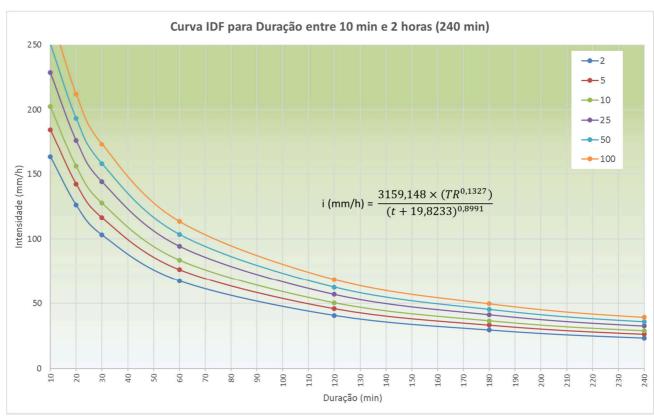


Figura 2 – Curva IDF da região Sul de Suzano para duração entre 10 min e < 2h

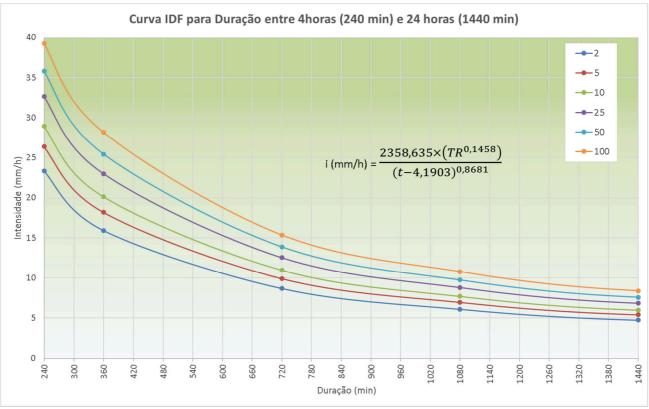


Figura 3 – Curva IDF da região Sul de Suzano para duração entre 2h e 24h

OU 2H

< 24H

PARA 240 MIN ≤ T < 1440 MIN OU 2H ≤ T

As equações de chuva que poderão ser utilizadas para os cálculos hidrológicos de chuva-vazão, drenagem, microdrenagem e serão destacadas no Manual de Manejo de Águas Pluviais são as seguintes:

 $I (MM/H) = \frac{2697,96 \times (TR^{0,1304})}{(t+19,8912)^{0,9007}} PARA T < 240 MIN OU 2H$ $I (MM/H) = \frac{2004,705 \times (TR^{0,1434})}{(t-4,1325)^{0,8684}} PARA 240 MIN \le T < 1440 MIN OU 2H \le T < 24H$ $I (MM/H) = \frac{3159,148 \times (TR^{0,1327})}{(t+19,8233)^{0,8991}} PARA T < 240 MIN OU 2H \le T < 240 MIN OU 2H \le T < 240 MIN OU 2H \le T < 240 MIN OU 2H < 140 MIN OU$

Tabela 6 - Equações IDFs para a região de Suzano

ONDE:

SUL

I : INTENSIDADE DE PRECIPITAÇÃO (MM/H);

I (MM/H) = $\frac{2358,635 \times (TR^{0,1458})}{(t-4,1903)^{0,8681}}$

- TR: PERÍODO DE RETORNO (ANOS);
- T : DURAÇÃO DA PRECIPITAÇÃO (MIN)

Apesar do dado inicial ser em minutos, a intensidade final é dada em milímetros por hora. Caso seja necessário determinar a intensidade por mm/min, basta dividir o resultado por 60. Deve-se ter muito cuidado na manipulação da intensidade, pois pode gerar erros grosseiros se não houver esta conversão.

Elaboração da Curva Chave do Rio Tietê nas Áreas de Várzeas de Suzano

A calha principal do rio Tietê atravessa a cidade de Suzano, passando sob a ponte da Av. Ver. João Batista Fitipaldi, existindo assim uma estação hidrometeorológica de chuva e nível do CEMADEN chamado de 355250225H – Posto Rio Tietê / Suzano desde 2016. Não são disponibilizadas vazões por falta de curva chave. Por isso, foram feitas medições de seção transversal e medições da altimetria do "zero" de leitura, efetuados

pelo CEMADEN em 2016 e pelo Consórcio em 2019, como pode ser observado na figura a seguir.

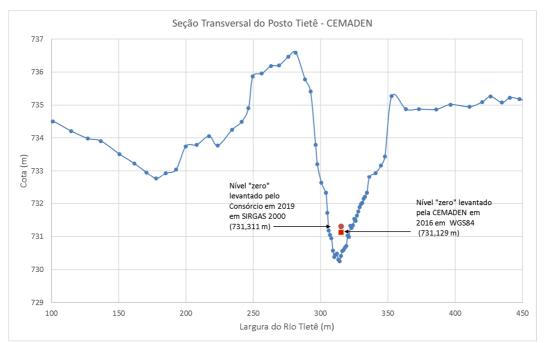


Figura 4 – Seção transversal medido pelo Consórcio IEME Brasil / Base sob o sensor de níveis do CEMADEN

A estação do CEMADEN coincide com a localização e possui praticamente a mesma área de drenagem com o Posto Fluviométrico Rio Abaixo (código DAEE 3E-052 e código ANA 62143000), que possui séries históricas de níveis e vazões de 1964 a 1991. Na montante, está localizado o Posto Fluviométrico da SABESP – Companhia Suzano, com séries desde 2014. As localizações dos postos podem ser observadas na figura a seguir.

Figura 5 – Localização dos postos fluviométricos utilizados

Para a elaboração das séries históricas e da determinação das médias e máximas, houve dificuldade na interpretação dos níveis na estação fluviométrica CEMADEN. O comportamento dos fluviogramas estavam distintos das usuais, com uma lenta ascensão e uma rápida recessão. As datas dos níveis máximos anuais não coincidiam com os níveis máximos anuais do posto da Sabesp. Também foram observados que em dias de altos volumes de precipitação, os níveis do posto CEMADEN permaneciam baixos.

Assim, estava claro que os dados estavam inconsistentes. Mesmo que existe a possibilidade da estacionariedade da série, em função das barragens do Alto Tietê – Taiaçupeba, Jundiaí, Biritiba, Ponte Nova e Paraitinga – existe uma área incremental de 426,9 km² e mesmo que todos os vertedores das barragens não esteja vertendo, uma chuva média de 30 mm em 24h elevará consideravelmente o nível na seção.

Mesmo que as vazões do posto da Sabesp poderiam preencher os dados inconsistentes da CEMADEN por regionalização, foram plotados num mesmo gráfico os níveis dos dois postos fluviométricos e verificar a inconsistência. Para a surpresa, os níveis da estação do CEMADEN estavam refletidos. Ou seja, os dados disponibilizados na internet eram as leituras do sensor no nível da água.

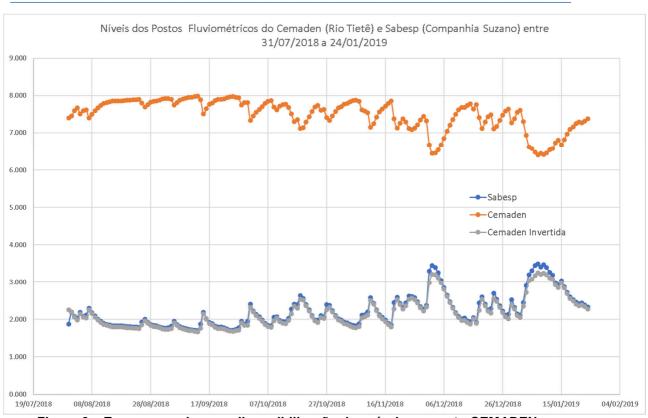


Figura 6 – Erros grosseiros na disponibilização dos níveis no posto CEMADEN

Com isso, foi possível elaborar a regionalização de vazões entre os postos da Sabesp e CEMADEN. Com a reconstituição das vazões naturais do posto Rio Abaixo, em que determinados períodos foram considerados as áreas das bacias das barragens que não haviam sido construídas entre 1964 a 1991, metodologia aplicada pela ONS na publicação "Estudos de Consistência e Reconstituição de Séries de Vazões Naturais na Bacia do Rio Tietê" (Consórcio Enerconsult/Hidrosistem/Internave, 2005), foi possível elaborar as séries de vazões máximas anuais entre 1964 a 2005 e 2014 a 2019.

Assim, foi possível elaborar uma curva chave para a seção do posto CEMADEN:

Tabela 7 – Curvas chave na estação fluviométrica Tietê do CEMADEN

$Q = 1,936671 \times (H - 730,25)^{1,814968}$	PARA H ≤ 733,5
	M
$Q = 0.00573 \times (H - 730.25)^{6.3502}$	PARA H > 733,5
	M

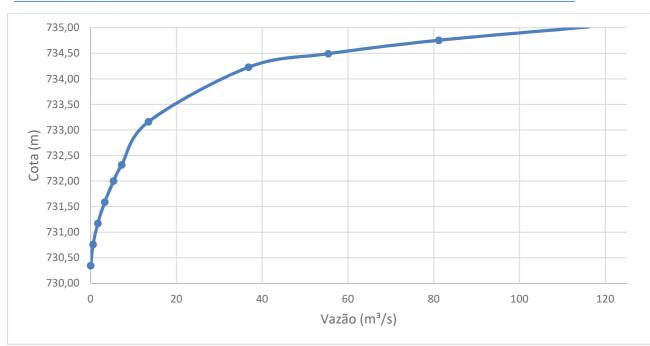


Figura 7 – Plotagem da curva chave no posto CEMADEN

Com a transposição de vazões e a aplicação da curva chave, foi possível elaborar a estatística dos níveis máximos no posto CEMADEN:

Tabela 8 – Parâmetros estatísticos da estação fluviométrica Tietê do CEMADEN

MEDIDAS DAS SÉRIES	
MÉDIA	733.24
MÁXIMO	734.81
MÍNIMO	732.18
AMPLITUDE	2.63
MEDIANA	733.15
MODA	733.1532452
VARIÂNCIA (\$2)	0.23
DESVIO-PADRÃO (S)	0.4825
VARIÁVEL REDUZIDA MIN (ZMIN)	-2.1999
VARIÁVEL REDUZIDA MAX (ZMAX)	3.2455
NÚMERO DE MEDIDAS:	33
ASSIMETRIA:	0.78
DISTRIBUIÇÃO DE EXTREMOS:	GUMBEL

Utilizando o Método dos Momentos e a distribuição probabilística de Gumbel, foi possível determinar os níveis máximos para cada período de retorno.

Distribuições Probabilísticas ajustadas às cotas Máximas em Tietê do Posto Cemaden Estimativa dos Parâmetros pelo Método dos Momentos

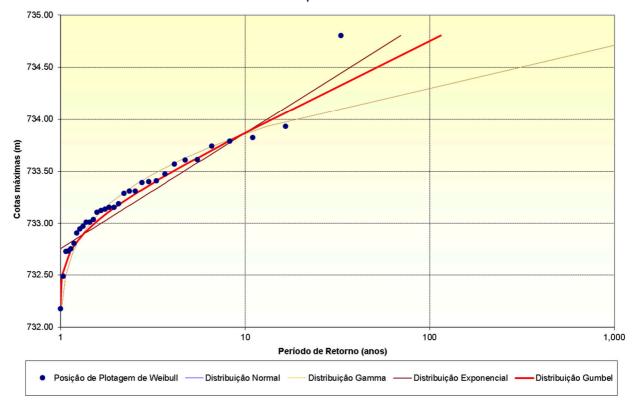


Figura 8 – Plotagem das distribuições probabilísticas no posto CEMADEN
Assim, obtém-se, através da extrapolação das distribuições os seguintes níveis máximos:

Tabela 9 – Resultado das probabilidades de níveis na estação fluviométrica Tietê do CEMADEN

PERÍODO DE RETORNO (ANOS)	PROBABILIDADE DE EXCEDÊNCIA	NÍVEIS (M)
2	0,5000	733,16
5	0,2000	733,59
10	0,1000	733,87
20	0,0500	734,14
25	0,0400	734,23
50	0,0200	734,49
100	0,0100	734,75
200	0,0050	735,02
500	0,0020	735,36
1000	0,0010	735,62
10000	0,0001	736,49

• Detalhamento e Caracterização das Sub Bacias

Para avaliar o impacto da urbanização sobre o sistema de drenagem existente, nas áreas mais críticas e adjacências, visando à identificação das causas das inundações.

Para avaliação dos cenários atual e tendencial, foram utilizadas ferramentas computacionais que são modelos matemáticos hidrológicos e hidráulicos, como os modelos HEC-HMS Hydrological Engineering Center Hydrological Modelling System e HEC-RAS Hydrological Engineering Center River Analysis System, desenvolvidos pela USACE - US Army Corps of Engineers para as bacias localizadas inteiramente no município, sendo elas:

- 1. Bacia do Rio Tietê e seus afluentes;
- 2. Bacia do Ribeirão Jaguari;
- 3. Bacia do Ribeirão Chico da Vargem;
- 4. Bacia do Ribeirão do Una:
- 5. Bacia do Ribeirão das Pedras e Córrego Varginha;
- 6. Bacia do Córrego Taiaçupeba Mirim;
- 7. Bacia do Reservatório Taiaçupeba;

- 8. Bacia do Rio Guaió (trecho urbano).
- 9. Bacia do Ribeirão Balainho;
- 10. Bacia do Córrego Taiaçupeba;
- 11. Bacia do Córrego Taiaçupeba Açú.

A numeração acima indica os números adotados no desenho a seguir.

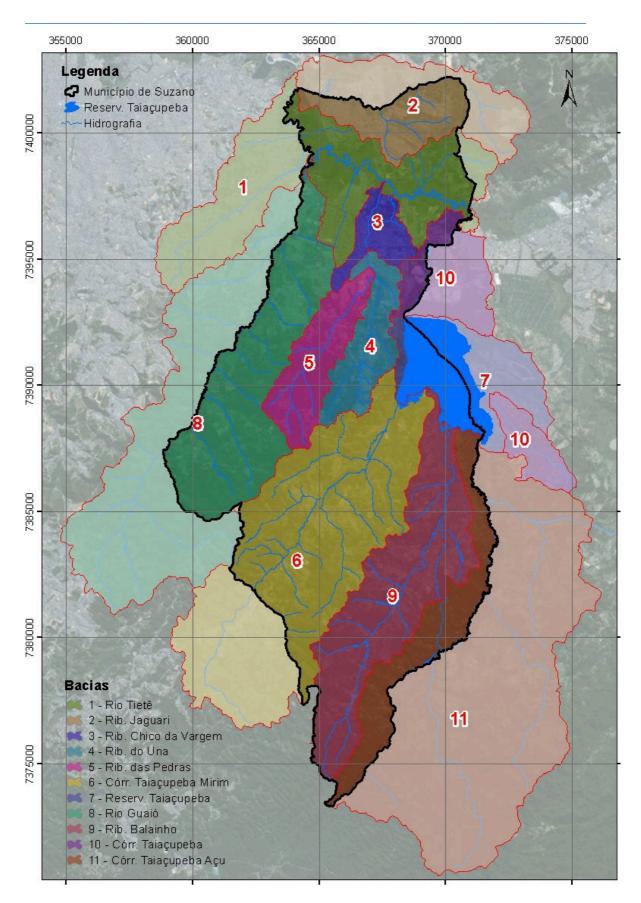


Figura 9 – Bacias consideradas no Estudo de Macrodrenagem

No cálculo do escoamento superficial de cada bacia foram utilizados os seguintes critérios de "Curve Number" da Natural Resources Conservation Service (NRCS – antigo SCS):

Tabela 10 – Tabela de valores adotados de CN para cada tipo de Uso do Solo

CLASSIF.	CN	TIPO	COBERTURA	BIBLIOGRAFIA
1	70	С	VEGETAÇÃO DENSA	(CHOW ET AL.) APPLIED HYDROLOGY - PÁG. 150 TIPOLOGIA CONJUGADA COM "WOOD OR FOREST LAND: GOOD COVER"
2	71	С	VEGETAÇÃO ESPARSA	(CHOW ET AL.) APPLIED HYDROLOGY - PÁG. 150 TIPOLOGIA CONJUGADA COM "MEADOW: GOOD CONDITION"
3	86	С	SOLO EXPOSTO	(CHOW ET AL.) APPLIED HYDROLOGY - PÁG. 150 TIPOLOGIA CONJUGADA COM "RANGE LAND: POOR CONDITION"
4	98	С	VIAS	(CHOW ET AL.) APPLIED HYDROLOGY - PÁG. 150 TIPOLOGIA CONJUGADA COM "STREETS AND ROADS"
5	99	С	HIDROGRAFIA (ÁGUA)	
6	90	С	URBANIZAÇÃO DENSA	(CHOW ET AL.) APPLIED HYDROLOGY - PÁG. 150 TIPOLOGIA CONJUGADA COM "RESIDENTIAL 65% AVERAGE IMPERVIOUS"
7	79	С	URBANIZAÇÃO ESPARSA	(CHOW ET AL.) APPLIED HYDROLOGY - PÁG. 150 TIPOLOGIA CONJUGADA COM "RESIDENTIAL 20% AVERAGE IMPERVIOUS"
8	74	С	CAMPOS	(CHOW ET AL.) APPLIED HYDROLOGY - PÁG. 150 TIPOLOGIA CONJUGADA COM "OPEN SPACES, LAWNS, PARKS: GOOD CONDITIONS"

CLASSIF.	CN	TIPO	COBERTURA	BIBLIOGRAFIA
				(CHOW ET AL.) APPLIED HYDROLOGY -
				PÁG. 150
9	78	С	CULTURA	TIPOLOGIA CONJUGADA COM
				"CULTIVATED LAND: WITH
				CONSERVATION TREATMENT"
				(SARTORI, A.) AVALIAÇÃO DA
		86 C		CLASSIFICAÇÃO HIDROLÓGICA DO
10	96		CEMITÉRIO	SOLO DO MÉTODO SCS - PÁG. 30
10	00		C CEMITERIO	TIPOLOGIA CONJUGADA COM "ESPAÇO
				ABERTO (CEMITÉRIOS): COBERTURA
				COM GRAMA <50%"

Assim, para cada sub bacia foram levantadas as áreas relativas a cada uso do solo de correlacionado com a Tabela 10.

1. Bacia do Rio Tietê e seus afluentes

Tabela 11 – Áreas relativas para cada tipo de Uso do Solo na bacia do Rio Tietê
Incremental

CLASSIFICAÇÃO	TIPO DE COBERTURA	BACIA RIO TIETÊ INCREMENTAL	
		ÁREA (%)	ÁREA (KM²)
1	VEGETAÇÃO DENSA	7,20%	3,66
2	VEGETAÇÃO ESPARSA	18,74%	9,54
3	SOLO EXPOSTO	4,44%	2,26
4	VIAS	3,98%	2,03
5	HIDROGRAFIA	2,31%	1,18

CLASSIFICAÇÃO	TIPO DE COBERTURA	BACIA RIO TIETÊ INCREMENTAL	
		ÁREA (%)	ÁREA (KM²)
6	URBANIZAÇÃO DENSA	36,31%	18,48
7	URBANIZAÇÃO ESPARSA	9,25%	4,71
8	CAMPOS	17,46%	8,89
9	CULTURA	0,31%	0,16
10	CEMITÉRIO	0,00%	0,00
		TOTAL:	50,89

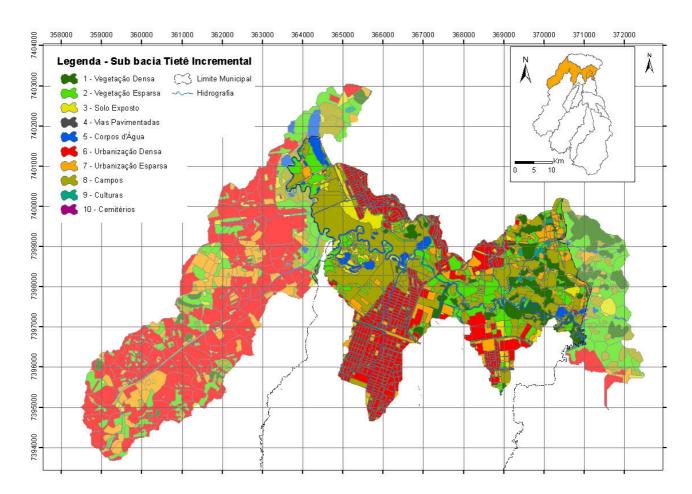


Figura 10 – Uso e ocupação na bacia incremental do Rio Tietê

2. Bacia do Ribeirão Jaguari

Tabela 12 – Áreas relativas para cada tipo de Uso do Solo na bacia do Ribeirão Jaguari

CLASSIFICAÇÃO	TIPO DE	BACIA RIB. JAGUARI	
CLASSII ICAÇÃO	COBERTURA	ÁREA (%)	ÁREA (KM²)
1	VEGETAÇÃO DENSA	16,97%	3,89
2	VEGETAÇÃO ESPARSA	11,32%	2,59
3	SOLO EXPOSTO	7,11%	1,63
4	VIAS	6,15%	1,41
5	HIDROGRAFIA	0,45%	0,10
6	URBANIZAÇÃO DENSA	24,88%	5,70
7	URBANIZAÇÃO ESPARSA	10,41%	2,38
8	CAMPOS	17,69%	4,05
9	CULTURA	5,03%	1,15
10	CEMITÉRIO	0,00%	0,00
		TOTAL:	22,89

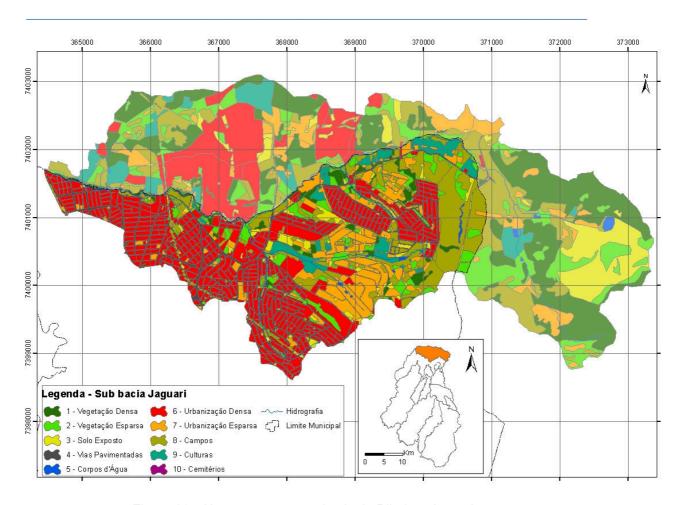


Figura 11 – Uso e ocupação na bacia do Ribeirão Jaguari

3. Bacia do Ribeirão Chico da Vargem

Tabela 13 – Áreas relativas para cada tipo de Uso do Solo na bacia do Ribeirão Chico da Vargem

CLASSIFICAÇÃO	TIPO DE	BACIA RIB. CHICO DA VARGEM	
CLASSII ICAÇÃO	COBERTURA	ÁREA (%)	ÁREA (KM²)
1	VEGETAÇÃO DENSA	1,03%	0,04
2	VEGETAÇÃO ESPARSA	4,57%	0,19
3	SOLO EXPOSTO	1,92%	0,08
4	VIAS	21,15%	0,90
5	HIDROGRAFIA	0,16%	0,01
6	URBANIZAÇÃO DENSA	57,59%	2,45

7	URBANIZAÇÃO ESPARSA	7,26%	0,31
8	CAMPOS	5,35%	0,23
9	CULTURA	0,00%	0,00
10	CEMITÉRIO	0,98%	0,04
		TOTAL:	4,25

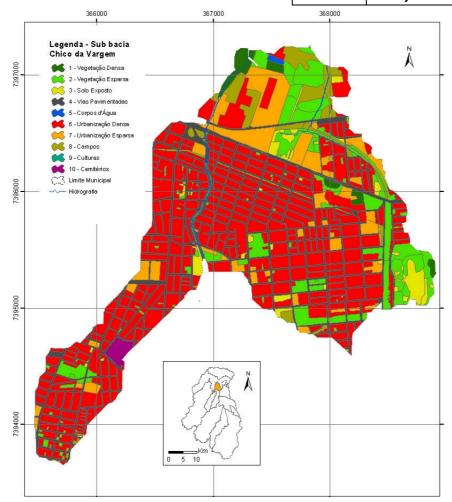


Figura 12 – Uso e ocupação na bacia do Ribeirão Chico da Vargem

4. Bacia do Ribeirão do Una

Tabela 14 – Áreas relativas para cada tipo de Uso do Solo na bacia do Ribeirão do Una

CLASSIFICAÇÃO	TIPO DE	BACIA RIB DO UNA	
CLASSIFICAÇÃO	COBERTURA	ÁREA (%)	ÁREA (KM²)
1	VEGETAÇÃO DENSA	19,25%	1,82

2	VEGETAÇÃO ESPARSA	18,65%	1,77
3	SOLO EXPOSTO	5,39%	0,51
4	VIAS	6,32%	0,60
5	HIDROGRAFIA	0,14%	0,01
6	URBANIZAÇÃO DENSA	17,30%	1,64
7	URBANIZAÇÃO ESPARSA	13,62%	1,29
8	CAMPOS	16,51%	1,57
9	CULTURA	2,16%	0,20
10	CEMITÉRIO	0,66%	0,06
		TOTAL:	9,48

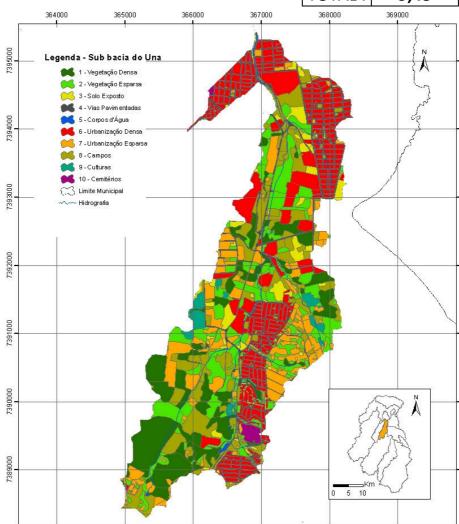


Figura 13 – Uso e ocupação na bacia do Ribeirão do Una

5. Bacia do Ribeirão das Pedras e Córrego Varginha

Tabela 15 – Áreas relativas para cada tipo de Uso do Solo na bacia do Corr. Varginha e Rib.

Das Pedras

CLASSIFICAÇÃ	TIPO DE	BACIA RIBEIRÃO DAS PEDRAS E CÓRR. VARGINHA		
O	COBERTURA	ÁREA (%)	ÁREA (KM²)	
1	VEGETAÇÃO DENSA	43,85%	5,34	
2	VEGETAÇÃO ESPARSA	21,19%	2,58	
3	SOLO EXPOSTO	1,93%	0,24	
4	VIAS	2,82%	0,34	
5	HIDROGRAFIA	0,23%	0,03	
6	URBANIZAÇÃO DENSA	7,20%	0,88	
7	URBANIZAÇÃO ESPARSA	10,53%	1,28	
8	CAMPOS	6,62%	0,81	
9	CULTURA	5,63%	0,69	
10	CEMITÉRIO	0,00%	0,00	
		TOTAL:	12,19	

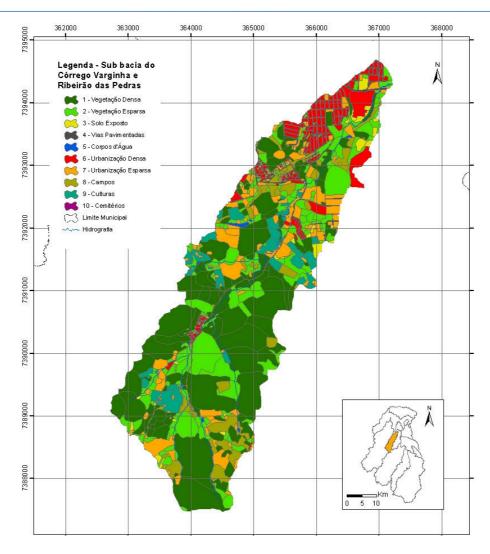


Figura 14 – Uso e ocupação na bacia do Córrego Varginha e Ribeirão das Pedras

6. Bacia do Córrego Taiaçupeba Mirim

Tabela 16 – Áreas relativas para cada tipo de Uso do Solo na bacia do Corr. Taiaçupeba Mirim

CLASSIFICAÇÃO	TIPO DE	BACIA CÓRR. TAIAÇUPEBA MIRIM	
	COBERTURA	ÁREA	ÁREA
		(%)	(KM^2)
1	VEGETAÇÃO DENSA	43,35%	26,27
2	VEGETAÇÃO	16,14%	9,78
2	ESPARSA	10,1470	
3	SOLO EXPOSTO	0,97%	0,58
4	VIAS	1,11%	0,67
5	HIDROGRAFIA	0,42%	0,25

6	URBANIZAÇÃO DENSA	7,33%	4,44
7	URBANIZAÇÃO ESPARSA	14,50%	8,78
8	CAMPOS	14,06%	8,52
9	CULTURA	2,13%	1,29
10	CEMITÉRIO	0,00%	0,00
		TOTAL	
		:	60,60

O mapa do uso do solo da bacia do Córrego Taiaçupeba Mirim está na Figura 15.

7. Bacia do Rio Guaió (trecho urbano)

Tabela 17 – Áreas relativas para cada tipo de Uso do Solo na bacia do Rio Guaió

	TIDO DE	BACIA RIO GUAIĆ		
CLASSIFICAÇÃO	TIPO DE COBERTURA	ÁREA (%)	ÁREA (KM²)	
1	VEGETAÇÃO DENSA	45,14%	37,39	
2	VEGETAÇÃO ESPARSA	7,30%	6,05	
3	SOLO EXPOSTO	1,56%	1,29	
4	VIAS	2,13%	1,76	
5	HIDROGRAFIA	0,37%	0,31	
6	URBANIZAÇÃO DENSA	15,55%	12,88	
7	URBANIZAÇÃO ESPARSA	7,74%	6,41	
8	CAMPOS	11,81%	9,79	
9	CULTURA	8,39%	6,95	
10	CEMITÉRIO	0,00%	0,00	
		TOTAL :	82,83	

O mapa do uso do solo da bacia do Rio Guaió está na página subsequente do mapa da bacia do Córrego Taiaçupeba Mirim, na Figura 16.

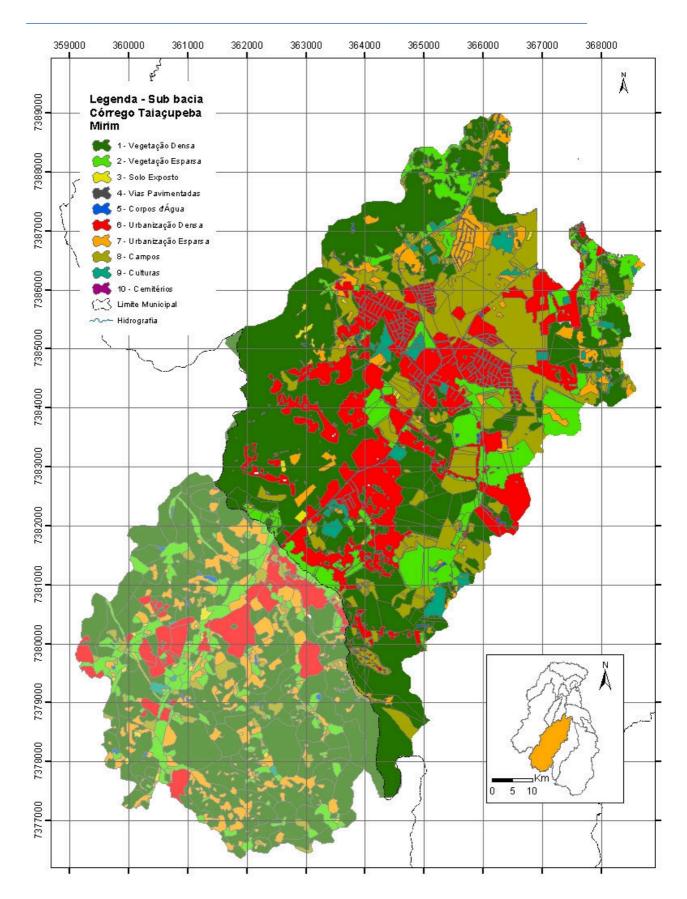


Figura 15 – Uso e ocupação na bacia do Córrego Taiaçupeba Mirim

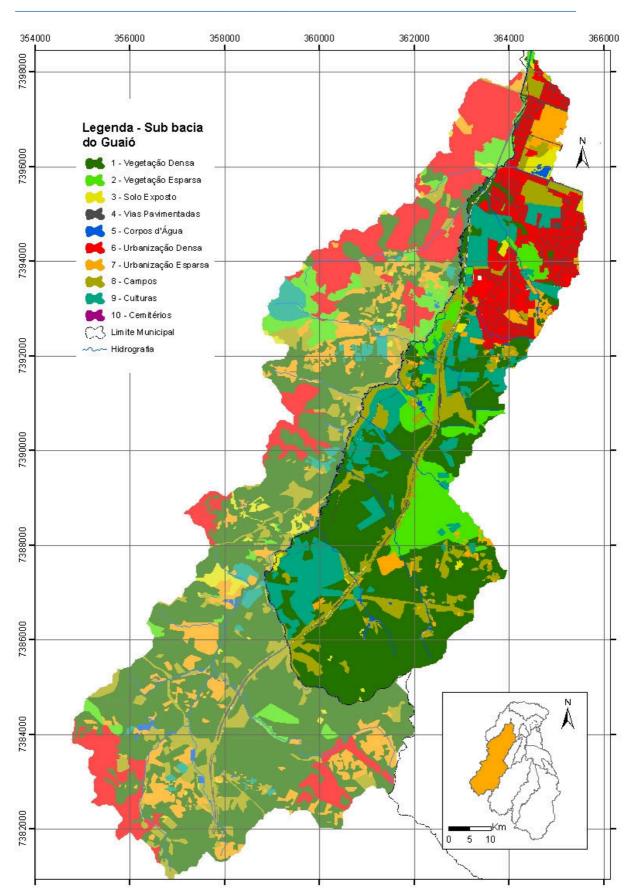


Figura 16 – Uso e ocupação na bacia do Rio Guaió

8. Bacia do Ribeirão Balainho

Tabela 18 - Áreas relativas para cada tipo de Uso do Solo na bacia do Rib. Balainho

	TIPO DE	_	BACIA RIB. BALAINHO		
CLASSIFICAÇÃO	COBERTURA	ÁREA	ÁREA		
		(%)	(KM²)		
1	VEGETAÇÃO DENSA	43,65%	13,20		
2	VEGETAÇÃO	11 220/	2.42		
2	ESPARSA	11,32%	3,42		
3	SOLO EXPOSTO	0,19%	0,06		
4	VIAS	0,36%	0,11		
5	HIDROGRAFIA	1,00%	0,30		
	URBANIZAÇÃO	1 (20/	0.40		
6	DENSA	1,62%	0,49		
7	URBANIZAÇÃO	12.070/	3,89		
7	ESPARSA	12,87%			
8	CAMPOS	11,45%	3,46		
9	CULTURA	17,54%	5,30		
10	CEMITÉRIO	0,00%	0,00		
		TOTAL:	30,23		

O mapa do uso do solo da bacia do Ribeirão Balainho está na Figura 17.

9. Bacia Taiaçupeba

Neste caso, foram somadas as bacias do Córrego Taiaçupeba Açu e do Córrego Taiaçupeba, nos trechos de montante e jusante da Barragem Taiaçupeba.

Tabela 19 – Áreas relativas para cada Uso do Solo na bacia do Córrego Taiaçupeba e Taiaçupeba Açu

CLASSIFICAÇÃO	TIPO DE	BACIA TAIAÇUPEBA		
CLASSIFICAÇÃO	COBERTURA	ÁREA (%)	ÁREA (KM²)	
1	VEGETAÇÃO DENSA	40,52%	59,54	
2	VEGETAÇÃO ESPARSA	7,97%	11,72	
3	SOLO EXPOSTO	3,28%	4,82	
4	VIAS	0,17%	0,25	

5	HIDROGRAFIA	8,75%	12,85	
6	URBANIZAÇÃO	4,82%	7,08	
O	DENSA	7,0270		
7	URBANIZAÇÃO	5,29%	7,78	
,	ESPARSA	3,23/0	7,70	
8	CAMPOS	13,36%	19,63	
9	CULTURA	15,83%	23,26	
10	CEMITÉRIO	0,00%	0,00	
		TOTAL		
		:	146,94	

O mapa do uso do solo da bacia do Taiaçupeba está na Figura 18.

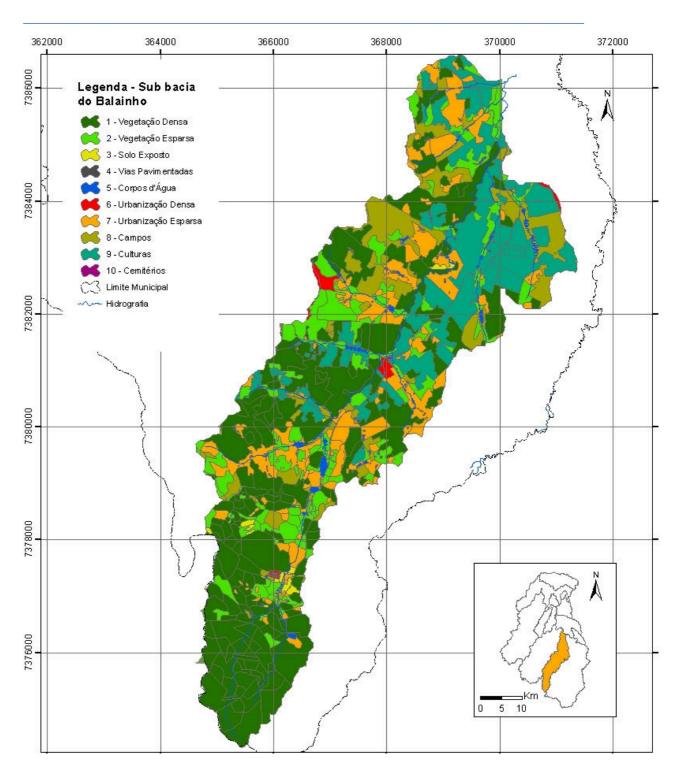


Figura 17 – Uso e ocupação na bacia do Ribeirão Balainho

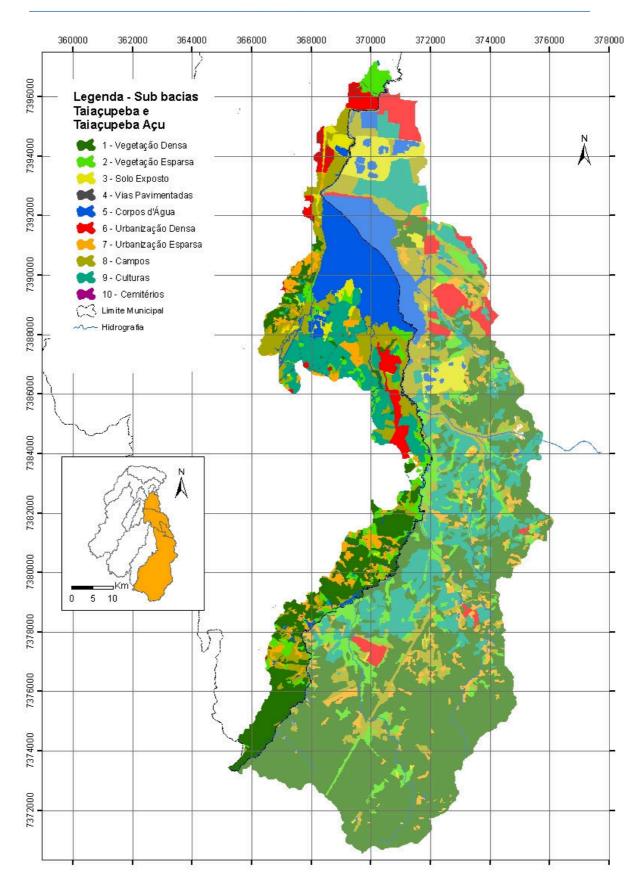


Figura 18 – Uso e ocupação na bacia do Córrego Taiaçupeba e Taiaçupeba Açu

Baseando na Tabela 10, onde os CN's classificados foram obtidos seguindo a classificação da tipologia do solo, de acordo com a Embrapa (2006). A bacia dos cursos d'água que passam pelo município de Suzano está quase toda inserida na classificação de Argissolo Vermelho – Amarelo (PVA), que de acordo com a publicação de Sartori (2005) intitulada "Classificação Hidrológica de Solos Brasileiros para a Estimativa da Chuva Excedente com o Método do SCS", está no Grupo Hidrológico C. Assim como o Cambissolo Háplico (CX), também está no Grupo Hidrológico C.

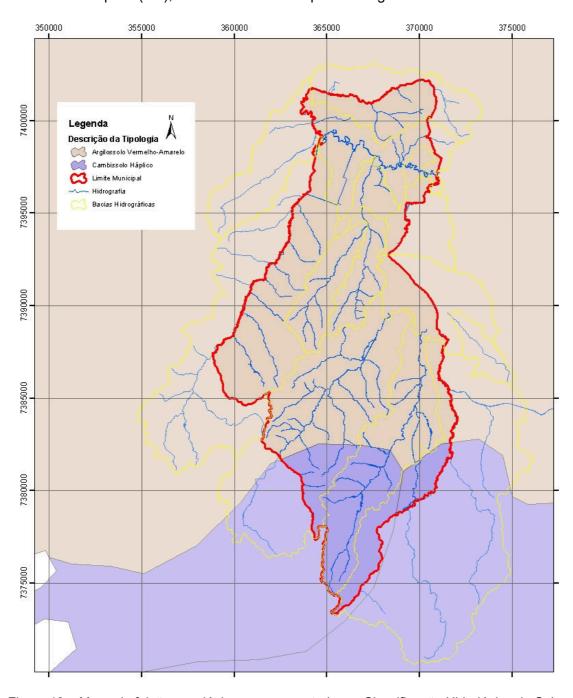


Figura 19 – Mapa de feições geológicas para caracterizar a Classificação Hidrológica de Solos

Assim, definidas as classificações de Uso e Ocupação do Solo e o Grupo Hidrológico C, foram obtidos os seguintes valores médios de CN na condição atual e os valores de CN no cenário futuro, que serviram para calcular o escoamento superficial na fase de diagnóstico e prognóstico, respectivamente. Percebe-se que os valores resultantes estão muito próximos.

Tabela 20 – Classificação dos CNs médios no cenário atual e futuro

	CN MÉDIO	CN MÉDIO
BACIAS	ATUAL	2040
BACIA RIO TIETÊ INCREMENTAL	82	83
BACIA RIB. JAGUARI	80	81
BACIA RIB. CHICO DA VARGEM	89	90
BACIA RIB DO UNA	78	79
BACIA RIBEIRÃO DAS PEDRAS E		
CÓRR. VARGINHA	74	75
BACIA CÓRR. TAIAÇUPEBA		
MIRIM	74	75
BACIA TAIAÇUPEBA	76	77
BACIA RIO GUAIÓ	76	76
BACIA RIB. BALAINHO	74	74

Em seguida, foi necessário levantar os pontos ou trechos onde ocorrem a maioria das inundações nos macrodrenos. Por isso, foram cruzadas as informações das ocorrências de inundação e alagamento, apresentadas pela Defesa Civil do Município de Suzano entre 2016 a 2019 e que serviram de referência nos estudos de macrodrenagem.

Pela Figura 20 a seguir, foi possível analisar os trechos prioritários e assim poder retirar da análise as seguintes sub bacias, pela inexistência de eventos de inundação:

- 5 Ribeirão das Pedras / Córrego Varginha Que será incorporada no estudo do Ribeirão Chico da Várzea;
- 7 Reservatório Taiaçupeba,
- 9 Ribeirão Balainho,
- 10 Córrego Taiaçupeba (Trecho à jusante da barragem de Taiaçupeba) e
- 11 Córrego Taiaçupeba Açu.

Pode-se observar algumas ocorrências nas sub bacias eliminadas. No entanto, estas são ocorrências em áreas que necessitam intervenções pontuais e foram tratadas na Etapa 1 – Estudo das Áreas de Risco:

- 9 Ribeirão Balainho: Área 33 Vila Nova Ipelândia;
- 10 Córrego Taiaçupeba: Área 1 Jardim Maitê e Área 6 Jardim Belém Urbano. Com as bacias selecionadas, todas foram simuladas com período de retorno de 100 anos, que é o mínimo recomendado pelo Departamento de Águas e Energia Elétrica do Estado de São Paulo DAEE, através da publicação "Guia Prático para Projetos de Pequenas Obras Hidráulicas" do DAEE e pela "Instrução Técnica da Diretoria de Procedimentos de Outorga" DPO 11 do DAEE.

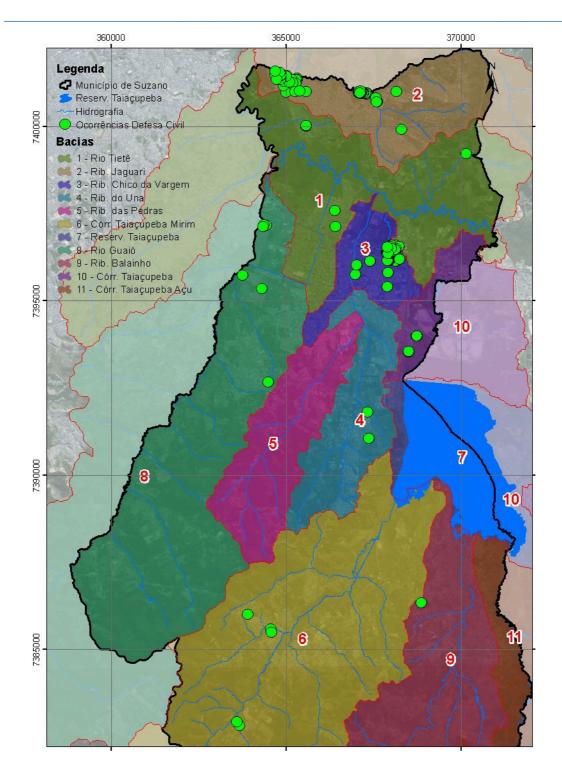


Figura 20 – Bacias consideradas no Estudo de Macrodrenagem e pontos de ocorrências

Assim, para cada sub bacia foram calculadas as vazões máximas, com a utilização de métodos recomendados pelo Manual de Cálculo de Vazões do DAEE.

1. Bacia do Rio Tietê e seus afluentes

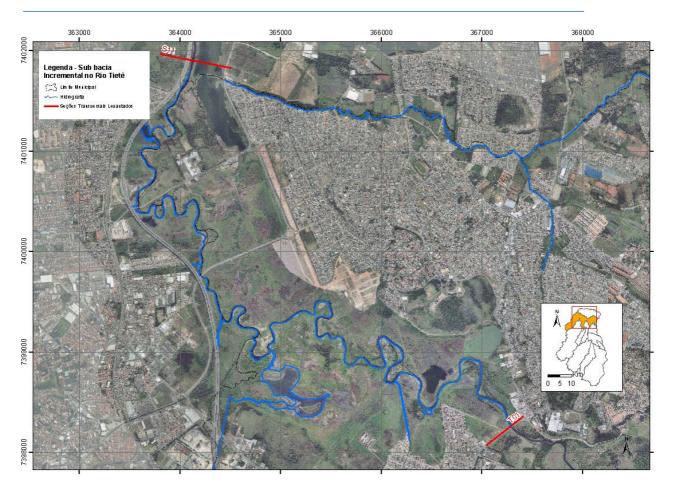


Figura 21 – Posição das seções transversais na Bacia Incremental do Rio Tietê

Tabela 21 – Tabela de Vazões e Posições das Seções Transversais

CURSO D'ÁGUA	SEÇÃO	VAZÃO TR 100 ANOS (M³/S)	DISTÂNCIA DA JUSANTE (M)	LOCAL
Ê			0	SEÇÃO À JUSANTE DA CONFLUÊNCIA COM
RIO	S11	80,57		O RIB. JAGUARI
	T01	107,45	12175	TRAVESSIA AV. JOÃO BATISTA FITIPALDI

2. Bacia do Ribeirão Jaguari

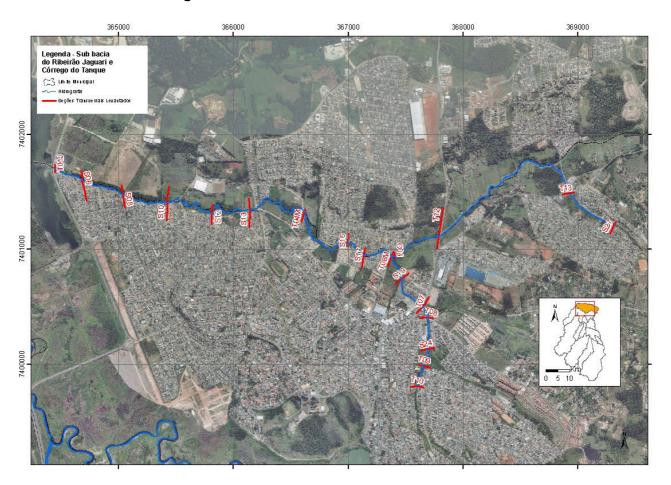


Figura 22 – Posição das seções transversais na Bacia do Ribeirão Jaguari

Tabela 22 – Tabela de Vazões e Posições das Seções Transversais

CURSO D'ÁGUA	SEÇÃO	VAZÃO TR 100 ANOS (M³/S)	DISTÂNCIA DA JUSANTE (M)	LOCAL
$\overline{\mathbf{z}}$	T01	226	0	TRAVESSIA ESTRADA GOV. MARIO COVAS
UA			651	SEÇÃO NA CID. MIGUEL BADRA AV.
AG	S08	257	651	EDMÍLSON MARCELINO
0			1058	SEÇÃO NA CID. MIGUEL BADRA NA RUA
IRÃ	S10	232	1038	MARIA DIVA
RIBEIRÃO JAGUARI			1589	SEÇÃO NA CID. MIGUEL BADRA AV.
<u>~</u>	S12	274	1389	RENATO ALPINO

CURSO D'ÁGUA	SEÇÃO	VAZÃO TR 100 ANOS (M³/S)	DISTÂNCIA DA JUSANTE (M)	LOCAL
	S13	277,9	2058	SEÇÃO NA CID. MIGUEL BADRA RUA BENEDITO ANUNCIAÇÃO
	T04	263,3	2718	TRAVESSIA DA ESTRADA DA GRANJA
	S16	251	3375	SEÇÃO NA CID. MIGUEL BADRA RUA ÁLVARES DE AZEVEDO
	S17	273,7	3563	SEÇÃO NO JARDIM FERNANDES
	T06	317	3865	TRAVESSIA AVENIDA JAGUARI
	C01	398	3891	CONFLUÊNCIA DO RIB. JAGUARI COM CÓRREGO DO TANQUE
	T12	395	4355	TRAVESSA ESTRADA PINHEIRINHO SUZANO
	T13	95.9	5721	TRAVESSA ESTRADA DO RENZI
	C02	95.9	5966	CONCLUÊNCIA AFLUÊNCIA COM O RIB. JAGUARI
	S27	20	6468	SEÇÃO NO JARDIM BRASIL
0	S19	202	4106	SEÇÃO NO JARDIM CARMEM
CÓRREGO DO TANQUE	T07	391	4419	TRAVESSIA AV. FRANCISCO MARENGO
NQ N	T08	273	4542	TRAVESSIA ESTRADA TAKASHI KOBATA
 SRR TA	S24	113	4822	SEÇÃO NO BAIRRO JARDIM EUROPA
Σ	T09	8	4998	TRAVESSIA R. PATRÍCIA VIEIRA BORINE

3. Bacia do Ribeirão Chico da Vargem

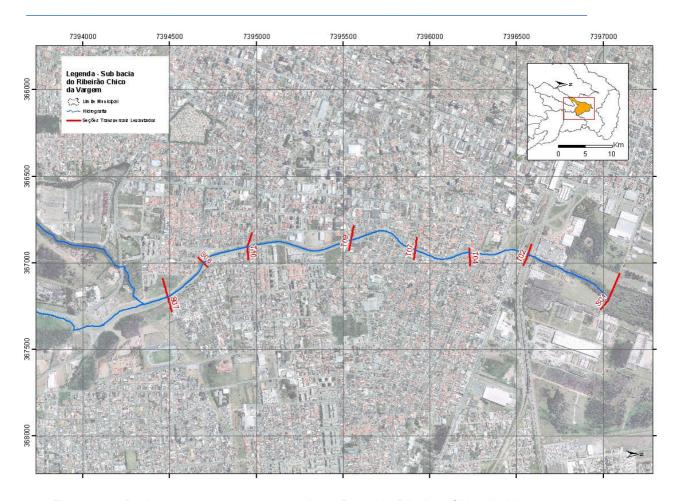


Figura 23 – Posição das seções transversais na Bacia do Ribeirão Chico da Vargem

Tabela 23 – Tabela de Vazões e Posições das Seções Transversais

CURSO D'ÁGUA	SEÇÃO	VAZÃO TR 100 ANOS (M³/S)	DISTÂNCIA DA JUSANTE (M)	LOCAL
	S01	194,41	0	SEÇÃO À JUSANTE RUA EMÍLIO DA RIVA
DA	T02	140,47	544,83	TRAVESSIA DA FERROVIA CPTM
0	T04	204,11	894,22	TRAVESSIA RUA PADRE EUSTÁQUIO
	T07	204,7	1223,58	TRAVESSIA RUA JULIO MATHEY
O C RG	T09	208,3	1640,58	TRAVESSIA RUA VER. ROMEU GRACIANO
RIBEIRÃO CHICO VARGEM	T10	211,25	2256,58	TRAVESSIA RUA LEILA TAKEUCHI
BEI	S06	199,9	2532,52	SEÇÃO NA RUA PROF. ROBERTO DAVID
<u>R</u>	S07	218,46	2965,83	SEÇÃO À JUSANTE DA CONFLUÊNCIA COM RIB. DAS PEDRAS

4. Bacia do Ribeirão do Una e Ribeirão das Pedras

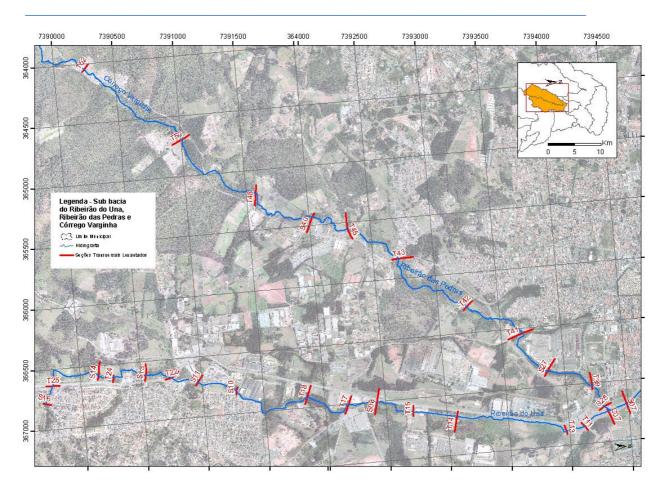


Figura 24 – Posição das seções transversais na Bacia do Ribeirão do Una e Rib. Das Pedras

Tabela 24 – Tabela de Vazões e Posições das Seções Transversais

CURSO D'ÁGUA	SEÇÃO	VAZÃO TR 100 ANOS (M³/S)	DISTÂNCIA DA JUSANTE (M)	LOCAL
	S25	94,10	60,4	SEÇÃO À JUSANTE RUA PEDRO SHIGUENO
ш	T39	94,08	435,8	TRAVESSIA DA RUA BARUEL
AS	S27	85,31	850,7	SEÇÃO NA CERÂMICA GYOTOKU
PEDRAS	T41	93,06	1319,3	TRAVESSIA ESTRADA ANTÔNIO JORGE
4S PEDRAS VARGINHA	T42	93,54	1913,4	TRAVESSIA ACESSO ESTRADA DO VIADUTO
	T43	0,15	2739,6	TRAVESSIA VALDECIR FERREIRA DOS REIS
, –	T45	74,03	3293,9	TRAVESSIA ESTRADA MATSUZAKI
BEIRÃO D, CÓRREGO	S40	74,12	3731,9	SEÇÃO ESTRADA GERALDO MIRANDA
RIBEIRÃO CÓRREG	T48	74,25	4374,4	TRAVESSIA ESTRADA EMILIA BARBOSA
~	T50	75,12	5248,7	TRAVESSIA RUA DOS CIPESTRES
	T52	47,42	6334,5	TRAVESSIA RUA VINTE E DOIS

CURSO D'ÁGUA	SEÇÃO	VAZÃO TR 100 ANOS (M³/S)	DISTÂNCIA DA JUSANTE (M)	LOCAL
,	C07	65,17	21,4	CONFLUÊNCIA COM O RIBEIRÃO DAS PEDRAS
	T11	69,99	406,1	TRAVESSIA ROTATÓRIA - ENTRADA PARA A AV. MARIO COVAS
	T13	69,51	568,2	TRAVESSIA ROTATÓRIA - ENTRADA PARA A ROD. INDIO TIBIRIÇA
,	T14	69,86	1536,1	TRAVESSIA ENTRADA PARA A PROBEL COLCHÕES
!	T15	70,04	1891,4	TRAVESSIA ENTRADA PARA A MITUTOYO
A Z	S08	70,26	2246,4	SEÇÃO PRÓXIMA A RUA MESSIAS DE OLIVEIRA PINTA
RIBEIRÃO DO UNA	T17	45,25	2490,2	TRAVESSIA RUA ERNESTO JOAQUIM DE SOUZA
ÃO	T18	60,15	2923,7	TRAVESSIA DE ACESSO AO GALPÃO
EIR	S10	52,36	3676,3	TRAVESSIA RUA ANTÔNIO F. DA CRUZ
RIB	S11	54,61	4017,5	SEÇÃO PRÓXIMA A RUA SEBASTIAN ROSEL GARCIAS
!	T22	48,24	4258,8	TRAVESSIA ROD. INDIO TIBIRIÇÁ
	S13	35,27	4500,5	SEÇÃO PRÓXIMA A RUA ANTÔNIO PECEGUEIRO
	T24	23,59	4840,9	CONFLUÊNCIA COM AFLUENTE SOB JD. VILA HELENA
	S14	36,34	4973,7	SEÇÃO À MONTANTE DO JARDIM VILA HELENA
!	T25	37,40	5509,4	SEÇÃO PARQUE UMUARAMA
ļ ļ	S16	40,20	5670,8	TRAVESSIA RUA VINTE E DOIS

5. Bacia do Córrego Taiaçupeba Mirim

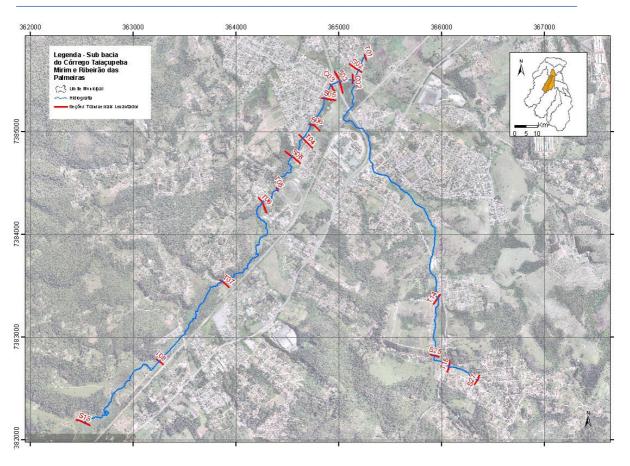


Figura 25 – Posição das seções transversais na Bacia do Córrego Taiaçupeba Mirim

Tabela 25 – Tabela das Vazões Máximas e Posições das Seções Transversais

CURSO D'ÁGUA	SEÇÃO	VAZÃO TR 100 ANOS (M³/S)	DISTÂNCIA DA JUSANTE (M)	LOCAL			
CÓRREGO TAIAÇUPEBA MIRIM	T01	663,44	0	TRAVESSIA PRÓXIMA À ESTRADA DA BORACÉIA			
	S02	560,22	148,76	TRAVESSIA ESTRADA DO PAU A PIQUE			
	C02	561,6	295,7	CONFLUÊNCIA COM O RIBEIRÃO DAS PALMEIRAS			
	S03	563,25	422,47	SEÇÃO PRÓXIMA À RODOVIA ÍNDIO TIBIRIÇÁ			
	C03	563,9	517,81	CONFLUÊNCIA COM O CÓRREGO LAVRAS MIRIM			
	S05	373,66	662,88	SEÇÃO NO PARQUE BUENOS AIRES (RUA 12)			
	S06	373,45	972,33	SEÇÃO NO PARQUE BUENOS AIRES (RUA 07)			

CURSO D'ÁGUA	SEÇÃO	VAZÃO TR 100 ANOS (M³/S)	DISTÂNCIA DA JUSANTE (M)	LOCAL			
	T04	374,64	1128,58	TRAVESSIA RUA SEBASTIÃO MOREIRA			
	S08	377,73	1349,74	SEÇÃO RUA SEBASTIÃO BASTOS DA SILVA			
	T05	283,5	1818,89	TRAVESSIA PRÓXIMA AO RECANTO MARIA DE JESUS			
	T06	06 290,3 2078,79 TRAVESSIA RUA AVELINO MARIANO					
	T07	304,36	3256,42	TRAVESSIA AVENIDA VICENTE PEDROSO DE MORAES			
	T08	314,5	4358,17	TRAVESSIA SÍTIO DOS MORAES (RUA ANTON STARK)			
	S15	316,37	5623,17	SEÇÃO NO SÍTIO DOS MORAES (MONTANTE)			
O AS	T14	74,55	2973,75	TRAVESSIA RUA 3			
RREG DAS MEIR	S25	47,09	3581,07	SEÇÃO NO RECREIO SANTA MARIA			
CÓRREGO DAS ALMEIRAS	T15	68,15	3784,2	TRAVESSIA NA ESTRADA DO KOYAMA			
Z A	S27	28,9	4116,02	SEÇÃO NO JARDIM BRASIL			

6. Bacia do Rio Guaió (trecho urbano)



Figura 26 – Posição das seções transversais na Bacia do Rio Guaió Tabela 26 – Tabela das Vazões Máximas e Posições das Seções Transversais

CURSO D'ÁGUA	SEÇÃO	VAZÃO TR 100 ANOS (M³/S)	DISTÂNCIA DA JUSANTE (M)		LOCAL			
RIO GUAIÓ	T01	535.72	0.0	TRAVESSIA R	UA MAJOR PII	NHEIRO FRÓ	ES	
	T02	499.64	628.6	TRAVESSIA A	VENIDA BRAS	IL		
	S04	501.15	1089.4	SEÇÃO NA RI	JA DA TRANSI	MISSÃO		
	T03	504.15	1455.4	TRAVESSIA N	A RUA DA TU	RMALINA		
	S07	505.51	1783.3	TRAVESSIA RUA DA ESMERALDA		RALDA		
	S10	508.55	2320.8	SEÇÃO NA PRAÇA 8				
	T04	512.95	2811.2	TRAVESSIA NA PRAÇA DR. CASSIO PIZA				
	T05	457.67	3605.8	TRAVESSIA ESTRADA SANTA MÔNICA				
				C05	412.40	6251.8		FLUÊNCIA COM RADA DAS NEVES
				CU3	412.40		ESIR	ADA DAS NEVE